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Two-particle dispersion by correlated random velocity fields
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We consider the two-particle dispersion in a velocity field, where the relative two-point velocity scales
according tov2(r )}r a and the corresponding correlation time scales ast(r )}r b. We show that fora/21b
,1 the diffusion approximation holds, and the increase in the interparticle distances is governed by the
distance-dependent diffusion coefficientK(r )}r a1b. The possible regimes outside of the validity of diffusion
approximation are discussed. The Kolmogorov scaling in turbulent flowa5b52/3 corresponds to a border-
line situation. The experimental data for this case suggest that the separation regime is probably ballistic.
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The story of scaling concepts in turbulent flows sta
from the seminal work of Richardson@1#, who observed tha
the mean square relative separation between two parti
initially in close vicinity, evolves in time according to
R2(t)5^r 2(t)&}t3. He moreover formulated a differentia
equation for the evolution of the distribution function of th
two-particle distances, being of the form of diffusion equ
tion with the distance-dependent diffusion coefficientK(r )
}r 4/3, giving a heuristic picture of particles’ separation. T
problem of correct statistical description of Richardson’s d
persion was continuously attacked during more than
years, but still did not found a satisfactory solution. It w
Batchelor@2# who first demonstrated that Richardson’s la
follows from the same scaling argument that leads to
Kolmogorov-Obukhov energy spectrum. Later on, he p
posed a different form of a diffusion operator, in which t
diffusion coefficient is not distance, but time dependent@3#.
The mixed forms were proposed in Refs.@4,5# ~see Ref.@6#
for the review of early work!. References@7,8# dispense from
the attempts to describe the dispersion by differential eq
tions and propose an essentially integral-equation descrip
based on a Levy-walk picture.

It is clear that the reasonable results, which can be c
pared to experiments, can be only obtained in compu
simulations taking into account realistic properties of the t
bulent velocity fields. On the other hand, the interest in
qualitative understanding of the mixing properties of rand
flows put forward the models which do not closely follo
the statistics of turbulence flow~such as white-in time
Gaussian fields of Refs.@9–11#!, but which have advantage
of being easier treated analytically or numerically. Thus,
kinematic simulations the velocity field is typically built u
from the structures~plane waves@12#, eddies@13#, or com-
bination of plane-waves and wavelets@14#, etc.!, each of
which is characterized by its own spatial scaler and the
scale-dependent correlation time. The amplitudes of
structures are chosen to mimic the known spectral prope
of the velocity field. For typical spectra used the local
assumption holds: The values of relative velocity at dista
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r are mostly determined by the structures of the scaler, so
that the typical Eulerian correlation time at this distance is
the order of the correlation time of the corresponding str
ture. For example, to mimic thed-correlated field, one can
take all these correlation times equal and small. In this ca
the differential form of the relative diffusion operator is e
act @9,10#, but the relative diffusion itself follows the law
R2(t)}t2/3 @14#, with the exponent twice smaller than th
Richardson’s 3. The simulations of Ref.@13# reproducing the
Richardson’s law take the correlation time to scale ast(r )
}r 2/3.

In what follows we consider qualitatively the situation
the particles’ separation in a field whose two-time correlat
function of relative velocities v(r ,t)5@V(r1x,t)
2V(x,t)#r /r behaves as ^v(r ,t1)v(r ,t2)&}v r

2(r )G@ t2

2t1 ,t(r )#. The temporal correlation part will be assumed
follow a universal scaling,G(t,r )5g@ t/t(r )#, wheret(r ) is
the correlation time, which depends on the distance betw
the points. Note that this correlation time is evaluated in
reference frame attached to one of the particles, just as
done in a Lagrangian approach of Ref.@13#. To be exact we
shall defineg(t) in such a way thatg(0)51 and*0

`g(s)ds
51. We first proceed along the lines of the Taylor-ty
analysis of the situation. Thus we consider velocity fie
whose mean squared relative velocity at two points separ
by the distancer scales as

^v2~r !&}v0
2S r

r 0
D a

~1!

and the corresponding correlation time scales as

t~r !}t0S r

r 0
D b

. ~2!

For example, for Kolmogorov’s scaling in a ‘‘normal’’ tur
bulent flow we always havev2(r )}e2/3r 2/3 where e is the
energy dissipation rate. Moreover, from the Kolmogor
scaling it also follows thatt(r )}e21/3r 2/3 ~i.e., the mean
lifetime of the eddy must be proportional to its revolutio
time! @6,15# so that a5b52/3. This is just the situation
simulated in Ref.@13#. In Ref. @14# another situation is con
5528 © 1999 The American Physical Society
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sidered. Here one takest to be a sweep time,t(r )}r /V0.
The physical picture here is that the particles are transpo
together through the eddy region, by the mean flow veloc
V0. The eddy velocity is only a small perturbation on t
background of the overall flow, and the proper lifetime of t
eddy is large. In this case one clearly hasb51.

Let us concentrate on the behavior of the second mom
of the particles’ separation. Following the standard appro
we start from the equation of motion for the interpartic
distance

dr

dt
5v~r !, ~3!

wherev(r ,t) is the fluctuating velocity andr (t) is the actual
particle’s position. Putting down an equation for the sepa
tion distance squared,dr2(t)/dt52v(r ,t)r (t), and averag-
ing it over realizations of the process~many different particle
pairs! we get

d^r 2~ t !&
dt

52^v~r ,t !r ~ t !&. ~4!

The valuesv(r ,t) and r (t) are correlated, sincer (t) is gov-
erned by Eq.~3!, whose formal solution is given by the in
tegral of the relative velocity of the particles along their L
grangian trajectory,r (t)5*v„r (t8),t8…dt8. Equation~4! thus
reads

d^r 2~ t !&
dt

52E ^v„r ~ t !,t…v„r ~ t8!,t8…&dt8. ~5!

Imagine now that thelocal correlation timeof the velocity
field is so short that the relative displacements during
time are to some extent small. The changes inr can then be
neglected, so that both velocities are evaluated in the s
space point. Moreover, the lower boundary of time integ
tion can be shifted to2`. One thus has

d^r 2~ t !&
dt

52^v2~r !&E gS t2t8

t~r ! Ddt852^v2~r !&t~r !

}v0
2t0S r

r 0
D a1b

. ~6!

This corresponds to diffusive behavior with positio
dependent diffusion coefficientK(r )}r a1b. Taking, as a
scaling assumption,r}^r 2(t)&1/25R, one gets that the mea
square separationR grows as

R2}t2/[22(a1b)] . ~7!

The reduction of a Lagrangian mean val
^v„r (t),t…v„r (t8),t8…& to a one-point quantity is based on
Taylor expansion forr (t8) backwards in time starting from
r (t): for t2t8 small r (t8)5r (t)2v„r (t),t8…(t2t8)1•••.
The corresponding expansion for the correlation funct
then reads
ed
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t

^v„r ~ t !,t…v„r ~ t8!,t8…&dt8

5E
0

t

^v„r ~ t !,t…v„r ~ t !,t8…&dt8

2E
0

t

^v„r ~ t !,t…¹ rv„r ~ t !,t8…v„r ~ t !,t…~ t2t8!&dt8•••.

~8!

Estimating the second term by the order of magnitude,
get it to be^uv3(r )u&t2/r . This term is typically small com-
pared with the first one if the particle displacementl (r )
5v(r )t(r ) during the correlation time~mean free path! is
small compared tor. The mean free path scales as

l ~r !}~v0
2!1/2t0~r /r 0!a/21b ~9!

and grows parametrically slower thanr if b,12a/2. The
shifting of the lower integration boundary to2` can be
verified by the fact that the correlation timet(r ), typical for
the distances of the order of mean square separation, g
asRb}tb/[22(a1b)] , i.e., for b,12a/2 slower thant.

In a short-correlation-time approximation one can obt
a closed differential equation for the probability dens
function ~PDF! of relative displacementsp(r ,t). Let us re-
turn to Eq.~3! and consider different realizations of the flow
According to Eq.~3!, the relative distance at timet.t0 for
each realization of the flow is fully determined by its pos
tion at t0. In different flow realizationsp(r ,t) depends on
r (t0) only, so that the dispersion problem corresponds t
Markovian random process. The PDF of this process is g
erned by an integral Chapman-Kolmogorov equation,
Ref. @16#. Since the trajectories of the process are conti
ous, in a short-correlation-time limit the integral Chapma
Kolmogorov equation can be reduced to a differential o
i.e., to a Fokker-Planck equation

]p~r ,t !

]t
52(

i

]

]xi
@Ai~r ,t !p~r ,t !#

1
1

2 (
i , j

]2

]xi]xj
@Bi j ~r ,t !p~r ,t !#. ~10!

The assumptions are the existence of the transition mome
i.e., of the limits

Bi j ~r ,t !5
1

Dt
^@xi~ t1Dt !2xi~ t !#@xj~ t1Dt !2xj~ t !#&

~11!

and

Ai~r ,t !5
1

Dt
^@xi~ t1Dt !2xi~ t !#& ~12!

independent ofDt, for Dt small compared to the observatio
time t, see Ref.@16# for the in-detail discussion of math
ematical requirements and their physical interpretation. T
nonvanishing contribution in Eq.~11! stems from the first-
order term; thus, fully parallel to Eq.~6! one has
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Bi j ~r ,t !'
d

dDtEt

t1DtE
t

t1Dt

^v i„r ~ t8!,t8…v j„r ~ t9!,t9…&dt8dt9

'2^v i~r !v j~r !&t~r ! ~13!

for all Dt@t(r ). The nonvanishing contribution toA stems
from the second-order term, since the first-order te
* t

t1Dt^v@r (t),t#&dt vanishes. Thus,

Ai~r ,t !'
d

dDtEt

t1Dt

dt8

3E
t

t8K (
j

]

]xj
v i@r ~ t !,t8#v j@r ~ t !,t9#L dt8dt9.

~14!

For incompressible flows,( j (]v j /]xj )50, one has

Ai~r ,t !5
1

2 (
j

]

]xj
Bi j , ~15!

so Eq.~10! reduces to a diffusion equation

]p~r ,t !

]t
5(

i , j

]

]xi
S 1

2
Bi j ~r ,t !

]

]xj
p~r ,t ! D , ~16!

which, for statistically isotropic systems, takes Richardso
form

]p~r ,t !

]t
5

1

r d21 S ]

]r
r d21K~r !

]

]r
p~r ,t ! D , ~17!

whereK(r ) is the radial part of12 B and is proportional to
(v0

2t0 /r 0
a1b)r a1b. The original Richardson equation corr

sponds to the valuesa5b52/3 following from the Kolmog-
orov scaling.

The existence of the domain of applicability of Eq.~17!
relies on the time hierarchyt(r )!Dt!t which must asymp-
totically hold for the separation distances typical for the o
servation timet, which, as already mentioned, is the case
b,12a/2. Note that Eq.~17! does not depend on the pre
cise structure of the flow lines and on the higher moment
the velocity distribution, and rules out, in a short-correlatio
time limit, the time-dependent and mixed forms of diffusio
coefficient, which might still apply in alternative situations

Let us consider the situation after the breakdown of d
fusive regime. The mean square separation cannot g
faster than is allowed by Eq.~3!, when takingv(r ) to be of
the order of the particles rms velocity~this supposes the par
ticles to undergo ballistic separation, without ever chang
the direction of their outwards motion!. This ballistic as-
sumption gives

R2}t4/(22a) ~18!

which is independent onb. Comparison of Eqs.~7! and~18!
shows that the transition takes place atb512a/2, i.e., im-
mediately after the breakdown of the diffusive approxim
tion. Ballistic separation is the typical mechanism of disp
sions in flows, where the flow lines of the relative motion a
open. On the other hand, in isotropic and homogeneous
s

-
r

f
-

-
w

g

-
-

o-

dimensional~2D! flows these flow lines are typically closed
showing a ‘‘cat’s eye in a cat’s eye’’ structure as depicted
Ref. @12#. Since the larger eddies are persistent during lo
time, the particles gets trapped within those, and the sep
tion distance at timet cannot exceed the characteristic radi
of such eddies. The particles thus perform a spiraling mot
and slowly increase the area visited. We shall term this
gime as inflatory separation. The typical separation dista
can be then estimated by reverting Eq.~2! and is

R2}t2/b, ~19!

which is nowa independent. The transition from diffusio
regime to the inflatory one again takes place exactly ab
512a/2; the inflatory and the ballistic regimes assume d
ferent flow structures but can coexist in flows of compl
geometries. This is probably the situation in the numeri
simulation of Ref. @14#, with b51, where the particles’
separation relies on the rare ballistic events and not on
typical behavior. The same situation is observed in the p
ticles’ dispersion in two-dimensional flows generated by
verse cascade@17#, see Ref.@18#.

The values ofa5b52/3, as following from the Kolmog-
orov scaling, correspond just to the borderline case,b51
2a/2. This applies when any superscaling~cascading! as-
sumption holds. If one, e.g., supposes, that there exis
unique kinematic parameterJ of dimension@La/Tb#, which
determines the flow’s behavior in some range of scales, t
from scaling considerations it follows immediately that a
velocity ~if only scaling and coordinate-dependent! behaves
as v2(r )}(Jr b2a)2/b @so thata52(12a/b)] and that any
characteristic time, as a function ofr, behaves ast(r )
}(J21r a)1/b ~so thatb5a/b). From this an equalityb51
2a/2 follows. For the borderline case of the Richardson
dispersion the functional asymptotic smallness of the me
free path does not hold anymore; it can be small only
some numerical parameter. From Eq.~9! it follows then that
l (r )5(v0t0 /r 0)r and is small compared tor if a number
parameterPs5v0t0 /r 0 ~the persistence parameter of th
flow! is small.

We stress that in the borderline case all three dispers
mechanisms, the diffusive~Richardson’s! one, the ballistic
one and the area inflation lead to thesamefunctional time-
dependence of the mean squared separation. The smal
ues ofPs lead to a diffusive behavior for which the Rich
ardson’s diffusion equation is exact; for large values ofPs
the other regimes are possible. The situations can be di
guished only on the ground of numerical prefactors and
behavior of the trajectories of the relative particles’ motion
We note that the transition from a Richardson’s to, e.g., b
listic regime when changingPs can be abrupt, as suggeste
by a simple heuristic model considered in the Appendix.

Let us make some estimates for the value ofPs in a
typical Richardson’s regime, starting from the values of t
Richardson’s constant and the prefactor of the longitudi
velocity in a three-dimensional case. Thus, in tree dim
sions one haŝv r

2(r )&5CLe2/3r 2/3, whereCL is a numerical
factor connected with the Kolmogorov constant. The gen
ally adopted numerical value of this factor isCL'2.0. On
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the other hand, the typical value of the numerical factorG in
the Richardson’s law,̂R2(t)&5Get3, is G'0.2. Starting
from the diffusion approximation we get for the diffusio
coefficient K(r )5v0

2t0(r /r 0)4/3'Ps CL
1/2e1/3r 4/3. From this

^R2(t)&5(2PsACL/3)3et3 follows, i.e., G>(2PsACL/3)3.
This gives us the numerical value of the persistence par
eter of approximately 0.6, which is to no extent small. T
strongly ballistic nature of the ‘‘normal’’ Richardson’s dis
persion can be seen also from the comparison of the
ticles’ separation velocity and the rms Eulerian velocity d
ference at the distancer. Such a comparison gives

vsep~r !

v r~r !
>

~3G/2!1/3

CL
1/2

'0.5 ~20!

which means~taking into account the possible curvature
the relative trajectories! that the particles’ separation velocit
has a strong ballistic component. Note that the closure
proximation giving G'2 leads tovsep(r )/v r(r )'1, i.e.,
corresponds to a purely ballistic behavior. The particles’ d
persion in two-dimensional flows generated by inverse c
cade@17#, is not fully ballistic, but still possesses a consi
erable ballistic component@18#.

In conclusion, we considered the two-particle dispers
in a velocity field, where the relative two-point velocit
scales according tov2(r )}r a and the corresponding correla
tion time scales as t(r )}r b. We show that for
a/21b,1 the dispersion can be described within a diff
sion approximation. The time evolution of interparticle d
tances is then governed by distance-dependent diffusion
efficient K(r )}r a1b. The Kolmogorov scaling in turbulen
flow a5b52/3 corresponds to a borderline situationa/2
1b51, where the type of stochastic process responsible
the dispersion depends on the numerical coefficients, for
ample, on the persistence parameter of the flow,Ps
5v0t0 /r 0. The experimental data suggest that in thre
dimensional flows the particle separation is dominated
ballistic events.

The hospitality of LMHD at the University Paris VI an
the financial support by CNRS are gratefully acknowledg
The author is indebted to Professor P. Tabeling, Profess
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APPENDIX

In order to elucidate the nature of the transition from d
fusive to ballistic motion and the possible regimes of t
Richardson’s dispersion, let us consider a heuristic disp
sion model that for smallt0 behaves diffusively and fort0
large changes abruptly to a ballistic regime. Parallel to
Lévy-walk model of Ref.@8#, we consider a motion of a
particle on a line with a coordinate-dependent velocity. W
take the magnitude of the velocity to be a function ofr only
and to be equal tov(r )5v0(r /r 0)a/2. Moreover, we accoun
for the temporal changes of the flow by letting the parti
from time to time change the velocity’s direction, keeping
magnitude constant. Distinct from Ref.@8#, the probability of
-

r-

p-

-
s-

n

o-

or
x-

-
y

.
J.

r-

r

e

changing the velocity during the instant of timedt depends
on the particle’s position and is given bydp5dt/t(r )
5t0

21(r /r 0)2bdt. Different scattering events are consider
to be independent~as they stem, so-to-say, from differe
eddies!. From this expression the probability of being sca
tered while crossing a distancedx follows:

dp5
dr

v~r !t~r !
5

1

v0t0
~r /r 0!2(b1a/2)dr. ~A1!

The probability of not being scattered on the way fromr 1 to
r 2 follows then as a Hertz distribution,

P~r 2ur 1!5expS 2E
r 1

r 2 1

v0t0
~r /r 0!2(b1a/2)dr D

5expS 2Ps21r 0
(b1a/2)21E

r 1

r 2
r

2(b1a/2)
dr D .

~A2!

Performing the integration, we get

P~r 2ur 1!5expF2
Ps21

12~b1a/2! S r 2

r 0
D 12(b1a/2)G

3expF Ps21

12~b1a/2! S r 1

r 0
D 12(b1a/2)G ~A3!

for b,12a/2 and

P~r 2ur 1!5S r 2

r 1
D 21/Ps

~A4!

for b512a/2. Note that this model~as long as only the
spatial aspects of the motion are considered! leads to a Mar-
kovian process of asymmetric walks, where the step dir
tion is chosen at random and a step length follows from E
~A3! or ~A4!. The conditional step length distributio
P(r 2ur 1) in this model is strongly asymmetric, and we sh
be interested mostly in the behavior of the outward ste
r 2.r 1. For b,12a/2 the distribution possesses the fir
and the second moments, both depending onr 1, and can be
mapped on a diffusion process.

For the cascading caseb512a/2 the existence of mo-
ments depends on the value ofPs: The nth conditional mo-
ment of the outwards step length (r 2.r 1) in this case is

Mn~r 1!5
r 1

1/Ps

Ps

1

n21/Ps
r n21/Psur 1

` .

One readily infers that forPs51/2 the second moment dis
appears, thus indicating that the process gets to be of a
diffusive nature, and starts to depend on long steps~ballistic
events!. For Ps51 disappears the first moment, so that t
process isdominatedby the ballistic events. We note that th
transitions between the regimes are sharp and not grad
which could possibly be the case also for a genuine prob
of transport in flows.
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